Some Efficient Numerical Solutions of Allen-Cahn Equation with Non-Periodic Boundary Conditions

نویسندگان

  • Ishtiaq Ali
  • Saeed
  • Islam
  • I. Siddique
  • Nasro Min-Allah
چکیده

Abstract: This paper presents some numerical methods for Allen-Cahn equation using different time stepping and space discretization methods with non-periodic boundary conditions. In space the equation is discretized by Chebyshev spectral method, while in time the exponential time differencing fourth-order Runge-Kutta (ETDRK4) and implicit-explicit scheme is used. For comparison we also use the finite difference scheme in both space and time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wave Equation in Non-classic Cases: Non-self Adjoint with Non-local and Non-periodic Boundary Conditions

In this paper has been studied the wave equation in some non-classic cases. In the  rst case boundary conditions are non-local and non-periodic. At that case the associated spectral problem is a self-adjoint problem and consequently the eigenvalues are real. But the second case the associated spectral problem is non-self-adjoint and consequently the eigenvalues are complex numbers,in which two ...

متن کامل

Snaking and isolas of localized states in bistable discrete lattices

We consider localized states in a discrete bistable Allen-Cahn equation. This model equation combines bistability and local cell-to-cell coupling in the simplest possible way. The existence of stable localized states is made possible by pinning to the underlying lattice; they do not exist in the equivalent continuum equation. In particular we address the existence of ‘isolas’: closed curves of ...

متن کامل

On a Higher Order Convective Cahn-Hilliard-Type Equation

A convective Cahn-Hilliard type equation of sixth order that describes the faceting of a growing surface is considered with periodic boundary conditions. By using a Galerkin approach the existence of weak solutions to this sixth order partial differential equation is established in L2(0, T ; Ḣ3 per). Furthermore stronger regularity results have been derived and these are used to prove uniquenes...

متن کامل

The Fourier spectral method for the Cahn-Hilliard equation

In this paper, a Fourier spectral method for numerically solving Cahn-Hilliard equation with periodic boundary conditions is developed. We establish their semi-discrete and fully discrete schemes that inherit the energy dissipation property and mass conservation property from the associated continuous problem. we prove existence and uniqueness of the numerical solution and derive the optimal er...

متن کامل

Energy stable model order reduction for the 1 Allen - Cahn equation

The Allen-Cahn equation is a gradient system, where the free-energy func4 tional decreases monotonically in time. We develop an energy stable reduced order 5 model (ROM) for a gradient system, which inherits the energy decreasing property 6 of the full order model (FOM). For the space discretization we apply a discontinuous 7 Galerkin (dG) method and for time discretization the energy stable av...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011